Extending the scope of poly(styrene)-block-poly(methyl methacrylate) for directed self assembly
نویسندگان
چکیده
Directed self-assembly (DSA) is a promising technique for extending conventional lithographic techniques by being able to print features with critical dimensions under 10 nm. The most widely studied block copolymer system is polystyreneblock-polymethyl methacrylate (PS-b-PMMA). The system is well understood in terms of its synthesis, properties and performance in DSA. However, PS-b-PMMA also has a number of limitations that impact on its performance and hence scope of application. The primary limitation is the low Flory-Huggins polymer-polymer interaction parameter (χ), which limits the size of features that can be printed by DSA. Another issue with block copolymers in general is that specific molecular weights need to be synthesized to achieve desired morphologies and feature sizes. We are exploring blending ionic liquid additiveswithPS-b-PMMAto increase the χ parameter. This allows smaller feature sizes to be accessed by PS-b-PMMA. Depending on the amount of additive it is also possible to tune the domain size and the morphology of the systems. These findings may expand the scope of PS-b-PMMA for DSA.
منابع مشابه
Denture base polymers, poly methyl methacrylate improved using free radical copolymerization
Poly methyl methacrylate (PMMA) is the most common material used in Prosthodontics. Several studies indicate a breakdown of the number of very high resin bases after 2 to 3 years to avoid breaking bass and several attempts have been made, such as altering the chemical structure of resin by adding causes cross linking or copolymerization. The innovative method for improving the physical properti...
متن کاملBlock copolymer assembly on nanoscale patterns of polymer brushes formed by electrohydrodynamic jet printing.
Fundamental understanding of the self-assembly of domains in block copolymers (BCPs) and capabilities in control of these processes are important for their use as nanoscale templates in various applications. This paper focuses on the self-assembly of spin-cast and printed poly(styrene-block-methyl methacrylate) BCPs on patterned surface wetting layers formed by electrohydrodynamic jet printing ...
متن کاملChemical and Physical Methods of the Templated Direction of Block Copolymers
This thesis discusses the investigation of various aspects of templated self-assembly of block copolymer (BCP) thin films for nanofeature fabrication. Two chapters outline the research of a combined physical and chemical templating method with two BCPs. The method was not effective in templating poly(styrene-block-methyl methacrylate) (PS-b-PMMA) BCP because of limited template wettability. The...
متن کاملThin Film Morphology of Block Copolymer Blends with Tunable Supramolecular Interactions for Lithographic Applications
A modular and hierarchical self-assembly strategy using block copolymer blends (AB/B’C) with tunable supramolecular interactions is reported. By combining supramolecular assembly of hydrogenbonding units with controlled phase separation of diblock copolymers, highly ordered square arrays or hexagonal arrays of cylindrical domains were obtained formixtures of poly(ethylene oxide)-b-poly(styrene-...
متن کاملA Novel Initiator of [5-(benzyloxy)-4-oxo-4H-pyran-2-yl]methyl-2-bromo-2-methylpropanoateas in Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate
A novel nano-initiator containing kojic acid moiety, [5-(benzyloxy)-4-oxo-4H-pyran-2-yl)methyl-2-bromo-2-methylpropanoate was synthesized by the reaction of 5-(benzyloxy)-2-(hydroxymethyl)-4H-pyran-4-one with 2-bromoisobutyryl bromide in triethylamine and used as initiator in the atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate in the presence of Cu(0)/CuCl2and N,N...
متن کامل